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Abstract

The association between body size at birth and risk of later cardiovascular disease is thought to be a consequence of metabolic changes

that accompany slow growth in utero. The metabolism of methionine and homocysteine has been investigated in relation to cardiovascular

risk and has also been assigned an important role in organogenesis and normal fetal growth. We determined concentrations of cobalamin,

folate, methionine, cysteine, cystathionine, and the marker of B-vitamin function, homocysteine, in 625 samples of amniotic fluid obtained in

the second trimester from normal pregnancies. Both vitamins and metabolites varied according to gestational age. The most noticeable

observation was that methionine in amniotic fluid during gestational weeks 13 to 17 strongly predicted final birth weight and length.

Metabolism of methionine may be a critical factor affecting fetal growth.

D 2006 Elsevier Inc. All rights reserved.

1. Introduction Remethylation of homocysteine to methionine is in most
Recent studies have associated low birth weight with

chronic disease in later life, such as hypertension, coronary

artery disease, insulin resistance, and non–insulin-dependent

diabetes [1-3]. The association between body size at birth

and risk of later disease is believed to be a consequence of

metabolic changes/features that accompany slow growth in

utero [1]. Both maternal nutrition and the amino acid

metabolism in the feto-maternal unit are known to affect

fetal organogenesis [4].

Recent animal data suggest that methylation reactions

and the micronutrients involved may be important in

regulation of the long-term programming of gene expression

[5-7]. Methionine metabolism and related B vitamins have

been assigned an important role in fetal nutrition, growth,

and development [5,8-11]. Abnormalities in methionine,

homocysteine, and cysteine metabolism have been associ-

ated with adverse pregnancy outcomes, such as placental

dysfunction and preeclampsia [12-14].
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tissues catalyzed by the enzyme, methionine synthase,

which requires cobalamin (vitamin B12) as cofactor and

folate as substrate. This explains why plasma total homo-

cysteine (tHcy) is elevated in both cobalamin and folate

deficiencies, and is a sensitive indicator of these deficiency

states [15]. In addition, homocysteine can be irreversibly

converted to cystathionine and further to cysteine by

2 pyridoxal phosphate (B6)–dependent enzymes, cystathio-

nine b-synthase and cystathionine lyase [16].

The composition of amniotic fluid (AF) is influenced

by both maternal and fetal metabolism and provides a

rational compartment for studies of fetal nutrition and

metabolism [17,18].

We examined methionine, homocysteine, the relevant

B vitamins, and the transsulfuration metabolites, cystathio-

nine and cysteine, in 625 samples of AF obtained in the

second trimester from pregnancies with a documented

normal outcome. Vitamins and metabolites were related to

pregnancy outcome and birth size.

2. Materials and methods

2.1. Materials

The AF specimens were taken by trans-abdominal

amniocentesis for genetic prenatal diagnoses. The total
perimental 55 (2006) 1186–1191



Table 1

Characteristics of the population (N = 625)

Indications for amniocentesis

Maternal age, n (%) 549 (88)

Previous child with chromosomal aberration, n (%) 47 (8)

Maternal epilepsy, n (%) 13 (2)

Other, n (%) 16 (3)

Maternal age, y, median (total range) 39.0 (24-46)

Gestational age, wk, median (total range) 14.4 (13-17)

Male sex, n (%) 315 (51)

Birth weight, g, mean (SD) 3575 (604)

Birth length, cm, mean (SD) 50 (3)
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number of AF samples was 625, and about 120 samples

were collected each year from 1993 to early 1998. Because

of limited volumes available, all analytes were not measured

in all samples.

The gestational age was determined by menstrual dates

and checked by ultrasound examination. Information on

pregnancy outcome was retrieved from questionnaires that

prenatal diagnosis patients routinely return after delivery

and linked to the corresponding sample. Samples collected

in gestational weeks 13 to 17 from singleton pregnancies

with a normal outcome were stripped for identifiers and

made available for this study. The procedures for informa-

tion collection were in accordance with the Revised

Helsinki Declaration of 1983, and ethical approval of the

protocol was granted by the local committee on medical

research ethics.

2.2. Sampling and storage

After amniocentesis, the samples were centrifuged. The

supernatants were used for a-fetoprotein determination, and

the remaining fluid was stored at �20 8C. All samples were

without visible signs of blood contamination. The storage

period before analysis of vitamins and metabolites ranged

from 1 to 7 years.

2.3. Biochemical analyses

Cobalamin was determined by a Lactobacillus leichman-

nii microbiologic assay [19] and folate by a Lactobacillus

casei microbiologic assay [20]. Both cobalamin and folate

assays were adapted to a microtiter plate format [21] and

carried out by a robotic workstation (Microlab AT plus 2;
Table 2

Vitamins and metabolites in AF from normal pregnancies in the second trimester

Parameters Ge

13 14 15

n 121 233 78

Cobalamin (pmol/L) 675 (588-761) 806 (742-871) 65

Folate (nmol/L) 4.6 (4.2-5.0) 4.6 (4.3-4.9) 4

Homocysteine (lmol/L) 1.2 (1.2-1.3) 1.2 (1.1-1.3) 1

Methionine (lmol/L) 32.2 (31.0-33.4) 30.4 (29.5-31.3) 27

Cystathionine (lmol/L) 1.9 (1.8-2.1) 2.0 (1.9-2.1) 1

Cysteine (lmol/L) 113 (109-116) 110 (108-113) 9

The values are given as mean and 95% confidence interval, and have been adjus
a Difference according to gestational age, adjusted for storage period, by gen
Hamilton Bonaduz AG, Bonaduz, Switzerland). Concen-

trations of tHcy, cystathionine, and total cysteine (tCys) in

AF were assayed using a gas chromatography–mass

spectrometry method based on ethyl chloroformate deriva-

tization [22]. Methionine was determined with a slight

modification of a published method [23] based on liquid

chromatography/mass spectrometry/mass spectrometry.

2.4. Statistical analysis

Data are presented as mean and SD or 95% confidence

interval, and median and total or interquartile range. The

concentrations of some vitamins/metabolites (in particular,

folate) changed significantly according to storage period,

which varied between 1 and 7 years. The concentrations of

cobalamin and the metabolites (tHcy and methionine) were

essentially stable. The vitamin and metabolite values were

therefore adjusted for sample storage time by general linear

univariate analysis of variance. Means were compared

by Student t tests and general linear univariate analysis

of variance. Correlation was assessed by Spearman corre-

lation coefficients.

Multiple linear regression models were used to assess the

relation between birth weight and the concentration of

vitamins and metabolites in AF. Two-sided P values b .05

were considered statistically significant. The SPSS statisti-

cal package (version 11, SPSS, Chicago, IL) was used for all

statistical analyses.
3. Results

3.1. Characteristics of study population

The characteristics of the study population are presented

in Table 1. The main indication for amniocentesis was

advanced maternal age (z38 years old at delivery), and

only 16% (n = 99) of the pregnant women were 37 years or

younger. Twenty-two infants (4%) had a birth weight of less

than 2500 g. Fifteen of these were born at term and defined

as intrauterine growth retarded. Eleven infants were born

prematurely (gestational week b37). There were significant

differences in birth weight (3642 vs 3511 g, P = .001), but

not in birth length (50.5 vs 49.6 cm, P = .09) between boys

and girls. Apgar data were available for 386 infants (62%).
stational week Pa

16 17

86 18

0 (554-746) 722 (617-826) 405 (206-604) .001

.3 (3.8-4.7) 3.8 (3.3-4.3) 3.0 (2.0-3.9) .005

.4 (1.2-1.5) 1.4 (1.3-1.5) 1.4 (1.2-1.7) .05

.2 (25.9-28.5) 26.0 (24.5-27.5) 23.6 (20.8-26.3) b .001

.4 (1.2-1.7) 1.6 (1.3-1.8) 1.5 (1.0-1.9) .004

9 (94-103) 97 (93-101) 97 (89-106) b .001

ted for storage period.

eral linear univariate analysis of variance.



Table 3

Metabolites in AF as determinants of birth weight and length

Independent variables Dependent variables

Birth weight (g)

(n = 533)

Birth length (cm)

(n = 474)

Ba P Ba P

Methionine 87 .001 0.34 .02

Cysteine �52 .04 �0.15 .26

Multiple linear regression; the model contains sex, gestational age, and

storage period in addition to the parameters listed in the table. The variables

are presented in the model as quartiles.
a Regression coefficient.
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The mean value for Apgar 1 was 8.8 (range, 0-10) and for

Apgar 2 was 9.2 (range, 7-10).

3.2. Vitamins and metabolites according to gestational age

Table 2 shows the mean and 95% confidence interval for

vitamins and metabolites in AF according to gestational

weeks 13 to 17. The values were adjusted for storage time.

All the analytes varied in relation to gestational week.

Methionine, tCys, cystathionine, folate, and cobalamin

concentrations decreased during the 5 weeks period,

whereas the concentration of tHcy increased.

3.3. Simple correlations

Spearman correlations for vitamins and metabolites in

AF are presented for the total group, as we did not find any

differences in correlations according to gestational age (data

not shown).

Total homocysteine was inversely, weakly, but signifi-

cantly correlated with cobalamin (r = �0.20, P b .001) and

folate (r = �0.25, P b .001), and both vitamins were

positively related to methionine (r = 0.20, P b .001, and

r = 0.24, P b .001, respectively) and to tCys (r = 0.16,

P b .01, and r = 0.30, P b .001, respectively). The

strongest relation was seen between methionine and tCys

(r = 0.52, P b .001), but significant relations were also

found between methionine and tHcy (r = 0.23, P b .001),

methionine and cystathionine (r = 0.35, P b .001), and

between tHcy and tCys (r = 0.43, P b .001).

3.4. Variations in analytes according to final birth weight

and length

Vitamins and metabolites in AF obtained in the second

trimester were related to measures of final fetal growth, birth
Fig. 1. Relation between methionine concentrations in AF samples and birth

weight. There was a significant increase in methionine quartiles with

increasing birth weight (Spearman r = 0.13, P = .001, n = 621). Bars

represent 95% confidence interval of the mean.
weight, and length, by unadjusted correlation (Fig. 1) and

multiple linear regression (Table 3). There was a significant

increase in birth weight with increasing methionine concen-

tration (Spearman r = 0.13, P = .001; Fig. 1). Other

metabolites or vitamins did not vary significantly according

to birth weight by unadjusted correlation.

The initial multiple linear regression model included all

variables (cobalamin, folate, tHcy, methionine, cystathio-

nine, and tCys) in addition to sex, gestational week, and

storage period of the samples. As only methionine and tCys

were significant at a level of P b .1, the other analytes were

excluded from the final model, and essentially the same

results were obtained. Methionine was the strongest

predictor of both birth weight (P b .001) and birth length

(P b .02), whereas tCys was a significant negative predictor

for birth weight (P b .04), but with no effect on birth length

(P b .26) (Table 3).
4. Discussion

We have determined concentrations of folate, cobalamin,

and related metabolites involved in methionine metabolism

in 625 samples of AF obtained in the second trimester from

pregnancies with a normal outcome. Both vitamins and

metabolites varied according to gestational age, and a

positive correlation between various analyte concentrations

was observed. The most noticeable observation was that

methionine in AF during gestational weeks 13 to 17

strongly predicted birth weight and length, whereas a

weaker, negative association was seen for tCys.

4.1. Study design and limitations

The AF samples were collected and stored on a routine

basis through a median period of 4 years (range, 1-7 years).

The reduction in concentration as a function of storage time

was moderate for some analytes, but marked for folate,

which is essentially in accordance with published data on

the stability of B vitamins in samples frozen at �20 8C [24].

The vitamin and metabolite concentrations (Table 2) were

therefore adjusted for storage time, which was also included

in the multiple regression model (Table 3).

Birth weight is known to be influenced by various

maternal factors, such as pre-pregnancy weight, height, and
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smoking habits [25]. Information of these parameters was

not available, which is a limitation of our study.

4.2. Concentrations of B vitamins and metabolites

The concentrations of folate and cobalamin in AF result

from placental transfer, fetal renal excretion and diffusion

through the nonkeratinized fetal skin [26], and interaction

with folate [27] and cobalamin [28] binders, which has been

detected in AF. The concentrations of metabolites and

amino acids in AF are also affected by placental and fetal

metabolism and transportation [29-32]. Protein binding may

however be less in AF than in plasma, as the concentration

of albumin, the main carrier of homocysteine and cysteine in

plasma [33], is low in AF [34].

We detected cobalamin and folate concentrations in AF

that are similar to concentrations previously reported by

others [11,35-38]. The cobalamin content was substantially

higher than in serum from term newborns and mothers [39].

We observed a reduction in both B vitamins according to

gestational age, as has previously been reported [38,40].

We measured tCys and methionine in AF at concen-

trations similar to those published by others [8,41].

Methionine, tCys, and cystathionine decreased as a function

of gestational age, as has been consistently reported for

several amino acids [41,42]. Notably, tHcy actually in-

creased according to gestational age. Such increase in tHcy

concentration in AF has been reported previously [36].

We detected a positive correlation between several

metabolites in AF. A strong correlation between neutral

amino acids in AF has been described before and interpreted

in terms of common transportation systems and metabolic

pathways [41]. Total homocysteine was inversely related to

both folate and cobalamin, as previously reported by

Steegers-Theunissen et al [36]. This suggests that tHcy in

AF is influenced by the activity of the folate- and

cobalamin-dependent homocysteine remethylation, as has

been established for tHcy in serum/plasma [15].

4.3. Birth weight and length

A novel and the most notable finding in this study was

the strong relation between AF methionine concentration

and birth weight. The relation was observed across the

whole range of methionine concentrations and within the

range of normal birth weight (Fig. 1, Table 3). The same

pattern was seen for birth length, but the association was

weaker. In adults, a significant portion of the ingested

methionine is converted to cysteine through the trans-

sulfuration pathway catalyzed by the enzyme cystathionine

lyase, but this enzyme activity is low or absent in fetal tissue

[43-45]. Inefficient transsulfuration in the fetus may

conserve methionine for important cellular functions,

including DNA methylation, polyamine synthesis, protein

synthesis, and cell growth [46].

Both animal and human studies suggest fetal methionine

conservation to support cell growth. Studies in rats have

demonstrated a positive relation between dietary methionine
and body weight [47]. Malinow et al [9] observed a negative

relation between birth weight and maternal homocysteine at

birth, and an umbilical venous-arterial difference for plasma

tHcy, which indicates fetal uptake of homocysteine.

Steegers-Theunissen et al [11] reported a high concentration

of methionine in coelomic fluid at 8 to 12 weeks of gestation,

which exceeds, but is strongly correlated to, the concentra-

tion in AF. Thus, the high concentrations of methionine and

cobalamin combined with low tHcy in extraembryonic

fluids [48] suggest that homocysteine remethylation is an

important source of methionine in the fetus.

Smoking is known to be one of the most significant

factors adversely affecting fetal growth [49]. In adults,

smoking is associated with decreased serum concentrations

of cobalamin and folate [50], and elevated plasma tHcy

[51]. Both reduced serum cobalamin [52] and increased

plasma tHcy concentrations [53] have been reported in

infants born to smoking mothers. Consequently, smoking

should be considered as a factor responsible for both

impaired fetal growth and reduced homocysteine remethy-

lation and thereby low methionine concentration. However,

this explanation is not supported by the observations of a

positive correlation between methionine and tHcy (r = 0.23,

P = .001), and no association of birth weight with tHcy,

folate, or cobalamin.

The lack of cystathionine lyase activity in fetal tissue

[43-45] may render cysteine an essential amino acid for the

fetus, and cysteine in AF may mainly reflect maternal

sources. We observed a weak, negative association between

tCys levels in AF and birth weight. This may be a chance

finding. However, high maternal tCys levels have also been

associated with pregnancy complications and adverse out-

comes, including preeclampsia, premature delivery, low

birth weight, and stillbirth [13,54].

In conclusion, this study demonstrates a strong associ-

ation of methionine in AF with birth weight and length.

This finding highlights the importance of methionine,

but also related metabolites and B vitamins for fetal growth

and development.
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